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Abstract
We investigate analytically the random walk of magnetic field lines. In previous
articles about this subject, a Gaussian model has been used for replacing the field
line distribution function. Here we employ a Kappa distribution to investigate
the influence of a non-Gaussian statistics. As shown, only the amplitude of
the field line mean square deviation and the field line diffusion coefficient
are different from the Gaussian model if we assume κ > 2. It seems that
the exact form of the field line distribution is less important for computing
field line diffusion coefficients in this case. This conclusion confirms previous
investigations performed within the framework of a Gaussian statistics.

PACS numbers: 52.30.Cv, 94.05.−a, 96.50.Bh

1. Introduction

A fundamental problem of plasma and astrophysics is the random walk of magnetic field
lines. In the theory of field line wandering we assume a superposition of a mean magnetic
field and a stochastic component. Such configurations can be found in the solar wind or in
the interstellar medium. Due to the stochastic component, field lines are not well defined and
have to be described using methods of statistical physics. The main aim of the theory of field
line random walk (FLRW) is the computation of the field line mean square displacement and
the field line distribution function perpendicular to the mean magnetic field.

While the investigation of FLRW can lead to an improved understanding of turbulence, the
knowledge of FLRW can also be important for describing the interaction between turbulence
and charged particles (e.g., cosmic rays) which experience scattering. As shown by different
authors (e.g., Webb et al 2006, Shalchi and Kourakis 2007c, Shalchi et al 2007, Webb
et al 2008) field line diffusion coefficients can directly be related to charged particle transport
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parameters describing scattering in the direction perpendicular to the mean magnetic field
(e.g., the magnetic field of the Sun).

Already in the 1960s of the 20th century investigators have started to describe the random
walk of magnetic field lines (see, e.g., Jokipii and Parker 1969). In these early papers, a
one-dimensional model (also known as slab model) was used for approximating the turbulent
magnetic fields. In more recent years, however, it became more and more clear that the slab
model provides only a very crude approximation for solar wind turbulence (see, e.g., Matthaeus
et al 1990). Whereas for slab turbulence the field line random walk can be described by an
exact formulation, one needs a theory for evaluating the field line statistics for any other model.

Matthaeus et al (1995) have developed a nonlinear theory for computing field line diffusion
coefficients for the so-called slab/2D composite model. Within the latter model it is assumed
that solar wind turbulence can be approximated by a superposition of slab fluctuations and
two-dimensional modes. This model seems to be an accurate model for solar wind turbulence
(see, e.g., Matthaeus et al 1990). Some years later, Shalchi and Kourakis (2007a, 2007b)
have generalized the diffusion theory of Matthaeus et al (1995) to allow also a non-diffusive
behavior of FLRW. For several turbulence spectra these authors found superdiffusive FLRW.
Other authors obtained also superdiffusion of field lines (see, e.g., Zimbardo et al 1995, 2000).

All these theoretical results are based on the assumption that the field lines can be
described by a Gaussian statistics. So far, however, this assumption has not been justified. It is
the purpose of the present paper to employ different field line distribution functions to explore
the importance of the field line statistics. We compute field line mean square deviations as
well as field line diffusion coefficients for a Kappa distribution. From the latter distribution the
Gaussian model can be obtained by a limiting process. Furthermore, we derive some general
properties of the field line mean square deviation and the field line diffusion coefficient for
arbitrary field line statistics.

The Kappa distribution has been successfully used to fit the distribution function of the
observed heliospheric magnetic field fluctuations at Earth on scales of 1 h (the timescale
associated with the turbulence correlation scale) to nearly 1 year (e.g., Burlaga and Vinas
2004). The data fits show that the magnetic field distribution function deviate strongly from
a Gaussian distribution on timescales of about 1 h to about 85 days, because 1.2 < κ < 1.5
(if κ → ∞, the Kappa distribution converges to a Gaussian distribution). This indicates that
the inertial and energy range of the power spectrum of magnetic fluctuations in the solar wind
is strongly non-Gaussian. The Kappa distribution can be interpreted in terms of the Tsallis
distribution representing Tsallis statistics (e.g., Burlaga and Vinas 2004, Leubner and Voros
2005). This statistics is a generalization of the standard Boltzmann (Gaussian) statistics to
model the effects of long-range forces, and long-time memory effects caused by intermittency
(the presence of coherent nonlinear structures) in systems such as the solar wind plasma.
Thus, the use of a Kappa distribution for modeling non-Gaussian statistics in the solar wind
has the advantage of a generalized statistical foundation in contrast to other non-Gaussian
distributions that have been used to fit observed magnetic field distributions in the solar wind.
Although we do not discuss dissipation effects in the turbulence wave spectrum, we like to
note that several studies show that non-Gaussian fluctuations are also found at the small scales
of the dissipation range (see, e.g., Leamon et al 1998, Sorriso-Valvo et al 1999, Alexandrova
et al 2008).

However, the observed κ values as described above, have to do with the distribution
function of the magnetic field fluctuations while in the theory of FLRW we compute the
distribution of the field line trajectories. Also, the non-Gaussian tails of the observations have
to do with intermittency. Sudden jumps in the magnetic field from the edges of nonlinear
coherent structures, such as magnetic islands, cause the magnetic field fluctuation distribution
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function to have strong non-Gaussian tails on short timescales. Coherent magnetic island
structures, if dominant, means that the FLRW is subdiffusive and that the distribution function
of the FLRW should not have strong extended non-Gaussian power-law tails but probably
should cut off. However, it could well be that the random magnetic field lines between the
coherent islands are Gaussian or even superdiffusive as the simulations of Zimbardo et al
(1995, 2000) showed when they solved the nonlinear field line equation numerically. The
result of the present paper (superdiffusive FLRW) refers to those fluctuations since the theory
of FLRW only deals with random linear wave fluctuations and not with nonlinear coherent
structures. Unfortunately, since the observed κ values include the effect of both coherent
structures and random fluctuations we do not know at this stage what the κ values are of the
random magnetic field component in between the magnetic islands, and we do not know how
the kappa value of the magnetic fluctuation distribution relate to the distribution function of
the FLRW. In the following sections we, therefore, treat κ as an unknown parameter which
can be used for investigating the influence of different field line distributions on the random
walk of magnetic field lines.

2. The nonlinear theory for FLRW

2.1. General equations

In this section, we discuss the standard approach for describing field line random walk
analytically in magnetostatic turbulence. The equation for the field lines �x = (x(z), y(z), z)

is dxBz(�x) = dzBx(�x). If we adopt turbulent magnetic fields with vanishing z-component
(δBz = 0) and that the mean field is aligned parallel to the z-axis ( �B0 = B0�ez) the field line
equation becomes

dx = δBx(�x)

B0
dz. (1)

The solution of this equation provides the field line x = x(z). A similar equation can be found
for the y-component. By integrating equation (1) the displacement in the x-direction can be
written as

�x(z) = 1

B0

∫ z

0
dz′ δBx(�x(z′)) (2)

and thus we find for the mean square displacement

〈(�x(z))2〉 = 1

B2
0

∫ z

0
dz′

∫ z

0
dz′′〈δBx(�x(z′))δB∗

x (�x(z′′))〉. (3)

By applying a Fourier representation for the magnetic fields, we can easily derive

〈(�x(z))2〉 = 1

B2
0

∫
d3k

∫
d3k′

∫ z

0
dz′

∫ z

0
dz′′〈δBx(�k)δB∗

x (�k′) ei�k·�x(z′)−i�k′ ·�x(z′′)〉 (4)

where we have used the ensemble average operator 〈· · ·〉. To proceed, we have to evaluate the
correlation function on the right-hand side of equation (4).

2.2. The nonlinear theory for FLRW

Equation (4) is a nonlinear equation since the field lines x(z) can be found on the right-
hand side as well as on the left-hand side. One possibility to evaluate such equations is the
application of quasilinear theory (see, e.g., Jokipii and Parker 1969). In this case the field
lines on the right-hand side of equation (4) are replaced by x(z) = y(z) = 0 corresponding to
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the unperturbed system (δBi = 0). A more appropriate (nonlinear) formulation for field line
random walk was proposed by Shalchi and Kourakis (2007a), which is a generalization of the
Matthaeus et al (1995) theory. Within a nonlinear formulation, we have to apply Corrsin’s
independence hypothesis (Corrsin 1959, Salu and Montgomery 1977, McComb 1990) in
equation (4) to obtain

〈δBx(�k)δB∗
x (�k′) ei�k·�x(z′)−i�k′ ·�x(z′′)〉 = 〈δBx(�k)δB∗

x (�k′)〉〈ei�k·�x(z′)−i�k′ ·�x(z′′)〉. (5)

As described in Matthaues et al (1995), the basic idea of the Corrsin approximation is that the
statistics of the magnetic fluctuations can be separated from those of the individual trajectories.
This separation reflects the fact that the random trajectory �x(z) is highly irregular and sensitive
to phases of the magnetic fluctuations, and not just the spectrum.

To proceed we assume homogeneous turbulence 〈δBx(�k)δB∗
x (�k′)〉 = Pxx(�k)δ(�k − �k′)

leading to

〈(�x(z))2〉 = 1

B2
0

Re

∫
d3k Pxx(�k)

∫ z

0
dz′

∫ z

0
dz′′〈ei�k·[�x(z′)−�x(z′′)]〉. (6)

For homogeneous turbulence the term in the brackets 〈· · ·〉 depends only on |z′ − z′′| and,
therefore,

�(z′, z′′) ≡ Re〈ei�k·[�x(z′)−�x(z′′)]〉 = �(|z′ − z′′|). (7)

In general, one can write∫ z

0
dz′

∫ z

0
dz′′ �(|z′ − z′′|) =

∫ z

0
dz′

∫ z′

0
dz′′ �(z′ − z′′) +

∫ z

0
dz′

∫ z

z′
dz′′ �(z′′ − z′). (8)

By using the integral transformation y = z′ − z′′ in the first, and y = z′′ − z′ in the second
integral, we find∫ z

0
dz′

∫ z

0
dz′′ �(|z′ − z′′|) =

∫ z

0
dz′

∫ z′

0
dy �(y) +

∫ z

0
dz′

∫ z−z′

0
dy �(y). (9)

By inserting 1 = dz′/dz′ in both integrals∫ z

0
dz′

∫ z

0
dz′′ �(|z′ − z′′|) =

∫ z

0
dz′ dz′

dz′

∫ z′

0
dy �(y) +

∫ z

0
dz′ dz′

dz′

∫ z−z′

0
dy �(y) (10)

and by using partial integration (p.I.), we have∫ z

0
dz′

∫ z

0
dz′′ �(|z′ − z′′|) p.I.= z

∫ z

0
dy �(y) −

∫ z

0
dz′ z′ d

dz′

∫ z′

0
dy �(y)

−
∫ z

0
dz′ z′ d

dz′

∫ z−z′

0
dy �(y). (11)

From this equation one can easily derive∫ z

0
dz′

∫ z

0
dz′′ �(|z′ − z′′|) = z

∫ z

0
dy �(y) −

∫ z

0
dz′ z′�(z′) +

∫ z

0
dz′ z′�(z − z′). (12)

By using y = z′ in the second integral and the transformation y = z − z′ in the third integral,
we find∫ z

0
dz′

∫ z

0
dz′′ �(|z′ − z′′|) = z

∫ z

0
dy �(y) −

∫ z

0
dy y�(y) +

∫ z

0
dy(z − y)�(y)

= 2
∫ z

0
dy(z − y)�(y). (13)
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Finally, we find the relation

Re

∫ z

0
dz′

∫ z

0
dz′′〈ei�k·[�x(z′)−�x(z′′)]〉 = 2Re

∫ z

0
dz′(z − z′)〈ei�k·��x(z′)〉 (14)

and equation (6) becomes

〈(�x(z))2〉 = 2

B2
0

∫
d3k Pxx(�k)

∫ z

0
dz′(z − z′)�(z′) (15)

with �(z) = Re〈ei�k·��x(z)〉 and ��x(z) = �x(z) − �x(0).
By differentiating this result with respect to z we find

d

dz
〈(�x(z))2〉 = 2

B2
0

∫
d3k Pxx(�k)

∫ z

0
dz′ �(z′). (16)

By considering the second derivative of the field line mean square deviation, an ordinary
differential equation can be obtained

d2

dz2
〈(�x(z))2〉 = 2

B2
0

∫
d3k Pxx(�k)�(z). (17)

This differential equation is correct for arbitrary turbulence (described by Pxx(�k)) and arbitrary
field line statistics (described by �(z)). To proceed, we have to specify the xx-component of
the magnetic correlation tensor Pxx(�k) as well as the characteristic function �(z).

Since the characteristic function �(z) is not known, we will impose the form of this
function. The model for �(z) depends on the variance 〈(�x(z))2〉 and, therefore, on z. The
dependence of the variance on z can then be deduced from equation (17). In the following
sections, we employ these ideas to compute the field line statistics.

3. The characteristic function

3.1. General properties

For Cartesian coordinates the characteristic function has the form

�(z) = Re〈eikxx+ikyy+ikzz〉. (18)

In the theory of field line random walk z is a variable and not a stochastic quantity. Thus, we
can write

�(z) = Re[eikzz〈eikxx+ikyy〉]. (19)

For Cartesian coordinates we can use

�(z) = Re

[
eikzz

∫ +∞

−∞
dx

∫ +∞

−∞
dy f (x, y, z) eikxx+ikyy

]
(20)

and for cylindrical coordinates

�(z) = Re

[
eikzz

∫ 2π

0
dφ

∫ ∞

0
dρ ρf (φ, ρ, z) eik⊥ρ cos(	) cos(φ)+ik⊥ρ sin(	) sin(φ)

]
. (21)

By assuming axisymmetric turbulence we can use f (φ, ρ, z) = f (ρ, z) and, therefore,

�(z) = Re

[
eikzz

∫ ∞

0
dρ ρf (ρ, z)

∫ 2π

0
dφ eik⊥ρ cos(φ−	)

]

= 2π cos(kzz)

∫ ∞

0
dρ ρf (ρ, z)J0(k⊥ρ), (22)
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where we have used cos(	) cos(φ) + sin(	) sin(φ) = cos(	 − φ) and (see, e.g., Gradshteyn
and Ryzhik 2000)∫ 2π

0
dφ eik⊥ρ cos(φ−	) = 2πJ0(k⊥ρ). (23)

In Equations (22) and (23) we have used the Bessel function J0(x). To evaluate equation (22)
we have to specify the field line distribution f (ρ, z). In section 6 of the present paper, we
derive some properties of FLRW for arbitrary f (ρ, z).

3.2. The simplest model: an exponential distribution

As an introductory example we replace the distribution function f (ρ, z) in equation (22) by
an exponential function of the form

f (ρ, z) = 3

2πσ 2
e−√

3ρ/σ (24)

with the variance σ 2(z) = 〈(�x)2〉. Note that σ ≡ σ(z). The factors in equation (24) arise
from the normalization condition

1 =
∫ 2π

0
dφ

∫ ∞

0
dρ ρf (ρ, z) (25)

and the definition of the variance

σ 2 =
∫ 2π

0
dφ

∫ ∞

0
dρ ρx2f (ρ, z). (26)

For this model equation (22) becomes

�(z) = 3 cos(kzz)

σ 2

∫ ∞

0
dρ ρJ0(k⊥ρ) e−√

3ρ/σ(z). (27)

Using (see, e.g., Gradshteyn and Ryzhik 2000)∫ ∞

0
dρ ρJ0(k⊥ρ) e−√

3ρ/σ =
√

3σ 2

(
3 + k2

⊥σ 2
)3/2 (28)

we find

�(z) = 33/2 cos(kzz)
(
3 + k2

⊥σ 2)−3/2
. (29)

3.3. The standard approach: a Gaussian statistics

For a Gaussian statistics we have

f (ρ, z) = 1

2πσ 2
e−ρ2/(2σ 2) (30)

with the variance σ 2 = 〈(�x)2〉. For this model equation (22) becomes

�(z) = cos(kzz)

σ 2

∫ ∞

0
dρ ρJ0(k⊥ρ) e−ρ2/(2σ 2). (31)

Using (see, e.g., Gradshteyn and Ryzhik 2000)∫ ∞

0
dρ ρJ0(k⊥ρ) e−ρ2/(2σ 2) = σ 2 e− 1

2 k2
⊥σ 2

(32)

we find

�(z) = cos(kzz) e− 1
2 k2

⊥σ 2
. (33)

This result was combined with equation (17) in several previous articles about FLRW (see,
e.g., Matthaeus et al 1995, Shalchi and Kourakis 2007a).
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3.4. New results: a Kappa distribution of field lines

An alternative model is the Kappa distribution also known as generalized Lorentzian function.
This model is very convenient to model observed velocity distributions (see Vasyliunas 1968),
since it is quasi-Maxwellian at low and thermal energies, while its non-thermal tail decreases
as a power law at high energies, as generally observed in space plasmas; this is in line with
the fact that particles of higher energy have larger mean free paths and are thus less likely to
achieve partial equilibrium.

In the present paper, we employ such a model for approximating the field line distribution
function:

f (ρ, z) = a(1 + b2ρ2)−κ . (34)

The parameter κ is a free parameter that can be used to obtain different distributions. The
parameter a can be obtained from the normalization condition

1 =
∫ 2π

0
dφ

∫ ∞

0
dρ ρf (ρ, z)

= 2πa

∫ ∞

0
dρ ρ(1 + b2ρ2)−κ

= πa

b2(κ − 1)
(35)

leading to

a = κ − 1

π
b2. (36)

The parameter b can be expressed by the mean square deviation

σ 2 =
∫ 2π

0
dφ

∫ ∞

0
dρ ρx2f (ρ, z)

= a

∫ 2π

0
dφ

∫ ∞

0
dρ ρ3 cos2(φ)(1 + b2ρ2)−κ

= πa

∫ ∞

0
dρ ρ3(1 + b2ρ2)−κ

= πa

2b4(κ − 2)(κ − 1)

= 1

2b2(κ − 2)
(37)

leading to

b2 = 1

2σ 2(κ − 2)
. (38)

To obtain a normalized form of the distribution function and to obtain a positive finite variance
we have to employ the restriction κ > 2. The Gaussian model used in previous articles about
FLRW can be recovered by the limiting process κ → ∞. In figure 1, we have compared the
different field line distribution functions.

For the Kappa distribution equation (22) becomes

�(z) = 2πa cos(kzz)

∫ ∞

0
dρ ρJ0(k⊥ρ)(1 + b2ρ2)−κ . (39)
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Figure 1. Different distribution functions for σ = 1. Shown are a simple exponential model
(dotted line), the Gaussian model (dashed line) and the Kappa distribution for different values of
κ , namely κ = 3, 5, 7, 10. For κ → ∞ the Kappa distribution becomes a Gaussian function.

The integral can be solved (see, e.g., Gradshteyn and Ryzhik 2000)∫ ∞

0
dρ ρJ0(k⊥ρ)(1 + b2ρ2)−κ = 21−κb−1−κkκ−1

⊥
�(κ)

Kκ−1

(
k⊥
b

)
, (40)

where we used the modified Bessel function of imaginary argument, Kλ(z). Therefore, the
characteristic function for the Kappa distribution becomes

�(z) = α(κ) cos(kzz)

(
k⊥
b

)κ−1

Kκ−1

(
k⊥
b

)
(41)

with

α(κ) = 22−κ

�(κ − 1)
. (42)

In the last step, we have used �(z + 1) = z�(z) (see, e.g., Abramowitz and Stegun 1974).

4. The field line mean square deviation for a Kappa distribution

The Gaussian model was used in several previous papers about FLRW. Here we focus on the
Kappa distribution. By combining Equations (17) and (41) we can describe analytically the
random walk of magnetic field lines.

d2

dz2
σ 2 = α(κ)

2

B2
0

∫
d3k Pxx(�k) cos(kzz)

(
k⊥
b

)κ−1

Kκ−1

(
k⊥
b

)
. (43)

To proceed we have to specify the xx-component of the magnetic correlation tensor.

4.1. Two-dimensional turbulence

It was often suggested (see, e.g., Matthaeus et al 1990) that solar wind turbulence can be
approximated by a superposition of slab and two-dimensional fluctuations. FLRW for slab
turbulence is not very interesting since the theory is exact in this case and does not depend on

8
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Table 1. Turbulence parameters used in the present paper.

Parameter Physical meaning

s Inertial range spectral index
q Energy range spectral index
C(s, q) Normalization function for general q > −1
l2D 2D bendover scale
δB2

2D Magnetic energy of the 2D fluctuations
B0 Mean magnetic field

any assumptions about the field line distribution. Therefore, we employ a two-dimensional
model in the current paper. In this case we have

P 2D
lm (�k) = g2D(k⊥)

δ(k‖)
k⊥

[
δlm − klkm

k2

]
, l, m = x, y (44)

leading to

d2

dz2
σ 2 = α(κ)

2π

B2
0

∫ ∞

0
dk⊥ g2D(k⊥)

(
k⊥
b

)κ−1

Kκ−1

(
k⊥
b

)
. (45)

This is the general formula for field line wandering in two-dimensional turbulence and a Kappa
distribution. In the following paragraphs, we specify the wave spectrum g2D(k⊥).

4.2. An arbitrary turbulence spectrum for the two-dimensional modes

In the current paragraph we employ a spectrum of the form

g2D(k⊥) = 2C(s, q)

π
δB2

2Dl2D
(k⊥l2D)q

[1 + (k⊥l2D)2](s+q)/2
(46)

with the normalization function

C(s, q) = �
(

s+q

2

)
2�

(
s−1

2

)
�

(
q+1

2

) . (47)

This spectrum was originally introduced by Shalchi and Weinhorst (2009). The parameters
used here are listed in table 1.

The spectrum is correctly normalized for s > 1 and q > −1. The spectrum is decreasing
in the inertial range

(
k⊥ � l−1

2D

)
where the spectrum has the form ∼k−s

⊥ . For instance, if
s = 5/3 we can reproduce a Kolmogorov (1941) spectrum and for s = 3/2 a Kraichnan
(1965) spectrum. We can reproduce an increasing (positive q) and decreasing (negative q)
spectrum in the energy range

(
k⊥ < l−1

2D

)
. The only limitation for the energy range spectral

index is q > −1. For this spectrum equation (45) becomes

d2

dz2
σ 2 = 4C(s, q)l2Dα(κ)

δB2
2D

B2
0

∫ ∞

0
dk⊥

(k⊥l2D)q

[1 + (k⊥l2D)2](s+q)/2

(
k⊥
b

)κ−1

Kκ−1

(
k⊥
b

)
. (48)

To proceed we employ the integral transformation x = k⊥/b. Furthermore, we use the
parameter

β = bl2D = 1√
2(κ − 2)

l2D

σ
(49)

to find
d2

dz2
σ 2 = 4C(s, q)α(κ)

δB2
2D

B2
0

βq+1J (β, κ, s, q) (50)

9
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with

J (β, κ, s, q) =
∫ ∞

0
dx

xq+κ−1

[1 + (βx)2](q+s)/2
Kκ−1(x). (51)

By considering the limit z → ∞ (stable regime) we expect σ 2 → ∞ and, therefore, β → 0.
In this limit we can use the approximation

J (β → 0, κ, q) ≈
∫ ∞

0
dx xq+κ−1Kκ−1(x). (52)

The remaining integral can be solved as (see, e.g., Gradshteyn and Ryzhik 2000)

J (β → ∞, κ, q) ≈ 2κ+q−2�

(
q + 2κ − 1

2

)
�

(
q + 1

2

)
. (53)

With this result equation (50) becomes

d2

dz2
σ 2 = 4C(s, q)α(κ)

δB2
2D

B2
0

2κ+q−2�

(
q + 2κ − 1

2

)
�

(
q + 1

2

)
βq+1

= F

(
s, q, κ,

δB2
2D

B2
0

) (
l2D

σ

)q+1

(54)

with

F = F

(
s, q, κ,

δB2
2D

B2
0

)

= 2(q+3)/2C(s, q)
δB2

2D

B2
0

�
(

q+1
2

)
�

(
q+2κ−1

2

)
�(κ − 1)

(
1

κ − 2

)(q+1)/2

. (55)

4.3. Superdiffusion for q < 1

For q < 1 this ordinary differential equation can easily be solved by the Ansatz

σ 2 = c|z|d (56)

leading to

c =
[
F · l

q+1
2D

(q + 3)2

4(1 − q)

]2/(q+3)

d = 4/(q + 3).

(57)

Obviously we find (so long as q < 1) a superdiffusive behavior of FLRW. The shape of the
field line distribution (described by the parameter κ) does not have an influence on the long
distance behavior of the variance (described by the parameter d).

In the case q > 1 we find a diffusive behavior of FLRW (see Shalchi and Weinhorst
2009). This case is investigated in section 5. In the following paragraph we consider different
limits to simplify equation (57).

4.4. Special cases

Here we consider different special cases for the parameters κ and q.

10
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4.4.1. Recovery of the Gaussian result. From equation (57) we can recover the Gaussian
statistics by employing the limiting process κ → ∞. To explore this limit we can use the
relation (see, e.g., Abramowitz and Stegun 1974)

lim
z→∞

�(z + a)

�(z + b)
∼ za−b. (58)

For κ → ∞ and by employing equation (58), equation (57) becomes

c =
[

2(q+3)/2C(s, q)
δB2

2D

B2
0

�

(
q + 1

2

)
l
q+1
2D

(q + 3)2

4(1 − q)

]2/(q+3)

d = 4/(q + 3).

(59)

Equation (59) is the result for FLRW for the arbitrary spectrum but for Gaussian statistics.

4.4.2. The flat spectrum q = 0. Here we simplify equation (57) for the special case q = 0
corresponding to a flat spectrum in the energy range

c =
[

9C(q = 0, s)

√
π

2
l2D

δB2
2D

B2
0

�(κ − 1/2)

�(κ − 1)
√

κ − 2

]2/3

d = 4/3.

(60)

Again the Gaussian result can be obtained by the limiting process κ → ∞ and by employing
equation (58) to find

c =
[

9C(q = 0, s)

√
π

2
l2D

δB2
2D

B2
0

]2/3

d = 4/3.

(61)

This result is in agreement with the result derived by Shalchi and Kourakis (2007a).
Equations (60) and (61) can now be compared to investigate the influence of the parameter
κ . Obviously the exponent d does not depend on the field line statistics described by the
parameter κ , only the amplitude c is different. We find from equations (60) and (61)

cKappa

cGauss
=

[
�(κ − 1/2)

�(κ − 1)
√

κ − 2

]2/3

. (62)

This ratio is visualized in figure 2. For κ > 3 the result derived by employing a Kappa
distribution agrees with the Gaussian result. Only for κ ≈ 2 the amplitude is much
larger.

5. Diffusion theory for the Kappa distribution

Here we investigate the case q > 1 by employing a diffusion theory. We start with equation (16)
and use the diffusion Ansatz

〈(�x(z))2〉 = 2|z|D (63)

with the field line diffusion coefficient D. Equation (16) becomes for diffusive FLRW

D = 1

B2
0

∫
d3k Pxx(�k)

∫ ∞

0
dz �(z). (64)

Here we have also assumed that the z-integral is convergent. Equation (63) can also be
combined with equation (41) to find

�(z) = α(κ) cos(kzz)

(
k⊥
h

)κ−1

Kκ−1

(
k⊥
h

)
(65)

11
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Figure 2. The ratio cKappa/cGauss versus the parameter κ (solid line). The latter parameter describes
the field line statistics. For a Gaussian model (dotted line) this ratio is 1. For κ � 2 the amplitude
of the diffusion coefficient corresponds to the Gaussian result. Only for κ ≈ 2 the amplitude is
much larger.

with

h2 = 1

4D|z|(κ − 2)
. (66)

To proceed we employ a slab/2D composite model for which equation (64) becomes

D = Dslab +
1

B2
0

∫
d3k P 2D

xx (�k)

∫ ∞

0
dz �2D(z). (67)

Dslab is the diffusion coefficient of the slab modes. This parameter is not discussed in the
present paper since the computation of Dslab is straightforward and independent of any theory
or assumption of the field line statistics. The z-integral in equation (67) can be rewritten as

∫ ∞

0
dz �2D(z) = α(κ)

∫ ∞

0
dz

(
k⊥
h

)κ−1

Kκ−1

(
k⊥
h

)

= 2α(κ)

γ

∫ ∞

0
dy yκKκ−1(y). (68)

Here we have employed the integral transformation y = √
γ z and we have used the parameter

γ = 4D(κ − 2)k2
⊥. The integral in equation (68) can be solved as (see, e.g., Gradshteyn and

Ryzhik 2000) ∫ ∞

0
dy yκKκ−1(y) = 2κ−1�(κ) (69)

to find ∫ ∞

0
dz �2D(z) = 2κ�(κ)α(κ)

γ

= 2κ�(κ)α(κ)

4D(κ − 2)k2
⊥

= κ − 1

κ − 2

1

Dk2
⊥

. (70)

12
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In the last step we have used equation (42). Therefore, we can rewrite equation (67) as

D = Dslab +
D2

2D

D
(71)

with the parameter (diffusion coefficient of the two-dimensional modes)

D2
2D = κ − 1

κ − 2

1

B2
0

∫
d3k P 2D

xx (�k)k−2
⊥

= κ − 1

κ − 2

π

B2
0

∫ ∞

0
dk⊥ g2D(�k)k−2

⊥ . (72)

Equation (71) can be written as

D =
Dslab +

√
D2

slab + 4D2
2D

2
(73)

in agreement with the formula derived by Matthaeus et al (1995) for a Gaussian distribution of
the field lines. Whereas equation (73) is the same for the Kappa distribution, equation (72) is
now slightly different. However, the relation to the wave spectrum is the same; only numerical
factors are different.

From equation (72) we can derive the Gaussian result by investigating the limit κ → ∞
leading to

D2
2D,Gauss = 1

B2
0

∫
d3k P 2D

xx (�k)k−2
⊥ (74)

which is the result which was derived in previous articles (see, e.g., Matthaeus et al 1995,
Shalchi and Weinhorst 2009). The difference between the result obtained for a Kappa
distribution and Gaussian statistics is given by the ratio

D2D,Kappa

D2D,Gauss
=

√
κ − 1

κ − 2
. (75)

Although trivial, this ratio is visualized in figure 3. As shown by Shalchi and Weinhorst (2009)
FLRW is indeed diffusive for the case q > 1. Analytical results for D2D,Gauss can also be
found in Shalchi and Weinhorst (2009). For q < 1 we are in the superdiffusive regime which
is discussed in section 4.

6. General results for an arbitrary distribution function

Here we investigate equation (17) for arbitrary field line statistics in the case of pure two-
dimensional turbulence. In the first paragraph, we compute the field line variance for a constant
spectrum at large scales corresponding to q = 0. In the second paragraph, we employ the
diffusion theory for an arbitrary spectrum.

6.1. Two-dimensional turbulence and a constant spectrum

For two-dimensional turbulence equation (17) becomes

d2

dz2
σ 2 = 2π

B2
0

∫ ∞

0
dk⊥ g2D(k⊥)�(z)

= 2π

B2
0

∫ ∞

0
dk⊥ g2D(k⊥)�(σk⊥). (76)
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Figure 3. The ratio D2D,Kappa/D2D,Gauss versus the parameter κ (solid line). The latter parameter
describes the field line statistics. For a Gaussian statistics (dotted line) this ratio is 1. For κ � 2
the amplitude of the diffusion coefficient corresponds to the Gaussian result. Only for κ ≈ 2 the
amplitude is much larger.

In the last step we have assumed that the characteristic function depends only on the
dimensionless parameter σk⊥. We are interested in the stable regime of FLRW and, thus, it is
reasonable to investigate the limit σ → ∞. To evaluate equation (76) we employ the integral
transformation y = k⊥σ to find

d2

dz2
σ 2 = 2π

B2
0

1

σ

∫ ∞

0
dy g2D

(
y

l2D

σ

)
�(y). (77)

For the limit σ → ∞ and using a constant spectrum in the energy range (q = 0) we find

d2

dz2
σ 2 ≈ 2π

B2
0

g2D(0)

σ

∫ ∞

0
dy �(y). (78)

The y-integral can be expressed using equation (22)∫ ∞

0
dy �(y) = 2π

∫ ∞

0
dρ ρf (ρ, z)

∫ ∞

0
dyJ0

(
y

ρ

σ

)

= 2πσ

∫ ∞

0
dρ f (ρ, z)

∫ ∞

0
dx J0(x)

= 2πσ

∫ ∞

0
dρ f (ρ, z). (79)

In the last step we have used that the x-integral yields one (see, e.g., Gradshteyn and Ryzhik
2000). To proceed we consider some general properties of the distribution function f (ρ, z).
First we assume that f (ρ, z) has the form

f (ρ, z) = f0

σ 2
h

(ρ

σ

)
. (80)

This form results from the normalization condition

1 = 2π

∫ ∞

0
dρ ρf (ρ, z)

= 2πf0

∫ ∞

0

dρ

σ

ρ

σ
h

(ρ

σ

)

= 2πf0

∫ ∞

0
dx xh(x). (81)
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Therefore, f 0 is a parameter which does not depend on the variance σ . By combining
equations (79) and (80) we find∫ ∞

0
dy �(y) = 2πf0

∫ ∞

0

dρ

σ
h

(ρ

σ

)

= 2πf0

∫ ∞

0
dz h(z) =: γD. (82)

The parameter γD introduced here is a numerical factor which depends on the shape of the
distribution function but not on the variance σ . With this result equation (78) becomes

d2

dz2
σ 2 = 2π

B2
0

γD

g2D(0)

σ
. (83)

Again we can solve this ordinary differential equation by employing the Ansatz

σ 2 = c|z|d (84)

leading to

c =
[

9π

2B2
0

γDg2D(0)

]2/3

d = 4/3.

(85)

The z-dependence of the variance does not depend on the form of the distribution function.
Consequently the form of the distribution function does only influence the amplitude of the
variance in the form of the parameter γD .

6.2. Diffusion theory for an arbitrary spectrum

From equation (64) we can derive the field line diffusion coefficient for two-dimensional
turbulence and arbitrary field line statistics

D = π

B2
0

∫ ∞

0
dk⊥ g2D(k⊥)

∫ ∞

0
dz �(z). (86)

To proceed we assume again the form �(z) = �(σk⊥) for the characteristic function. By
employing the diffusion Ansatz σ 2 = 2zD this becomes �(z) = �(

√
2zDk⊥). Using the

integral transformation y = √
2zDk⊥ we find∫ ∞

0
dz �(z) =

∫ ∞

0
dz �(

√
2zDk⊥)

= 1

Dk2
⊥

∫ ∞

0
dy y�(y)

= εD

Dk2
⊥

. (87)

The parameter εD does not depend on the wave number k⊥ or the field line diffusion coefficient
D, but on the shape of the distribution function. With this form equation (86) becomes

D2 = πεD

B2
0

∫ ∞

0
dk⊥ g2D(k⊥)k−2

⊥ (88)

or, in terms of the diffusion coefficient obtained by assuming a Gaussian statistics

D = √
εDDGauss. (89)

For all possible distributions we obtain the same form of the field line diffusion coefficient D,
only the amplitudes depend on the assumed statistics.
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7. Summary and conclusion

In the present paper, we have revisited the problem of the field line random walk. For any
turbulence model except the case of pure slab fluctuations one has to employ a nonlinear theory
for describing the field line statistics. Furthermore, the field line distribution function has to be
specified in order to evaluate the nonlinear theory of field line wandering. In previous articles
a Gaussian distribution function has been employed also in cases for which a nondiffusive
behavior of FLRW was obtained. This can be seen as one of the weaknesses of the nonlinear
description of field line wandering.

Therefore, we have investigated the influence of non-Gaussian statistics on the FLRW
in the present paper. We derived analytically the field line mean square displacement (for
the non-diffusive case) and the field line diffusion coefficient D for a Kappa distribution.
Furthermore, we have derived results for two-dimensional turbulence but arbitrary statistics.
In all cases we have demonstrated that the assumed statistics has only an influence on the
amplitude of the field line mean square displacement or the field line diffusion coefficient.

This result justifies previous results obtained for Gaussian statistics. It seems that the
nonlinear standard theory for FLRW (see, e.g., Matthaeus et al 1995, Shalchi and Kourakis
2007a) is indeed qualitatively correct even if the real field line distribution function is not in
agreement with a Gaussian function. In the case of a Kappa distribution function we only
obtain different amplitudes for the field line mean square displacement and the field line
diffusion coefficient if κ ≈ 2. In this case the amplitudes are much larger in comparison to
the Gaussian result.

The main result of this work is that the form of the field line distribution function does not
influence the qualitative character of transport. This result is at variance with some previous
articles on anomalous diffusion, where it is shown that non-Gaussian, power-law distributions
in space are closely linked to superdiffusion and Levy random walks (see for instance the
recent review by Metzler and Klafter (2004)). A possible explanation for this variance could
be the assumption κ > 2 used in the present paper to ensure a finite variance.
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